A STATE OF THE STA

UNIVERSITY OF THE PUNJAB

Third Semester 2012

Examination: B.S. 4 Years Programme Roll No.

PAPER: Discrete Mathematics (IT)
Course Code: IT-21404

TIME ALLOWED: 2 hrs. & 30 mins.

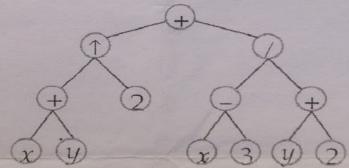
MAX. MARKS: 60

Attempt this Paper on Separate Answer Sheet provided.
Subjective Part

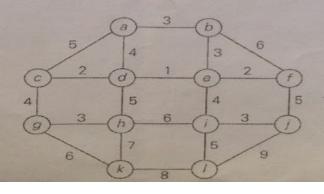
Question-2

(5+5+5+5+5+5)

- a) Write converse and contra positive statement of "two angles are a linear pair only if they are supplementary".
- b) Check whether the given graph is W_7 complete bipartite or not.
- c) Suppose a programming language requires you to define variable names (identifiers) using exactly 3 different upper case characters. How many different identifiers contain either an A or a B, but not both?
- d) Show that $(p \to r) \land (q \to r)$ and $(p \lor q) \to r$ are logically equivalent.
- e) Draw graph of the following adjacency matrix


$$\begin{bmatrix} 0 & 2 & 3 & 0 \\ 1 & 2 & 2 & 1 \\ 2 & 1 & 1 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}$$

f) Show that $1^2 + 2^2 \dots n^2 = \frac{n(n+1)(2n+1)}{6}$ for all positive integers


Question-3

10+10+10)

- a) Consider P(x): "x can speak Russian" and let Q(x): x knows c+1" Convert the following statements into symbolic form by using Quantifiers and predicates First take universe of discourse ={students in your school" then take U.D ={all people}}
 - a. There is a student in your school who can speak Russian and who knows C+
 - b. No student at your school either can speak Russian and knows C++.
 - c. Not all students at your school can speak Russian.
 - d. There is a student in your school who can speak Russian but do not know C++.
 - e. Every student at your school knows C++.
 - b) List the Pre-order and in order, post order traversal and in order traversal of the following tree.

c) Apply Prim's and kruskal's algorithm to find a spanning tree from the following graph.

Third Semester 2013 Examination: B.S. 4 Years Programme Roll No. ..

PAPER: Discrete Mathematics (IT) Course Code: IT-21404 / MATH-231

TIME ALLOWED: 2 hrs. & 30 mins. MAX. MARKS: 50

Attempt this Paper on Separate Answer Sheet provided.

F	Short Questions	
Q2	Show that there are no solutions in integers x and y of $x^2 + 3y^2 = 8$.	10×2
	Let $f: R \to R$ be defined by $f(x) = \frac{5x-7}{3}$. Find a formula for f^{-1} .	
	Show that among any group of five (not necessarily consecutive) integers, there are two	2_
1	with the same remainder when divided by 4.	000
	Define one-to-one and onto functions.	ri o
	Determine whether the function $f(x) = x^3$ form $R \to R$ is one-to-one? Is this function	601
	onto? Ranto	
What is the Cartesian product $A \times B \times C$, where $A = \{0,1\}$, $B = \{1,2\}$, an		
1	$C = \{0,1,2\}$?	11.1
1	Find the prime fectorization of 45617.	
	List five integers that are congruent to 4 modulo 12.	CIN
	If the product of two integers is 2 ³ 3 ¹ 5 ² 7 ¹¹ and their greatest common divisor is	H
	2 ³ 3 ⁴ 5, what is their least conumon multiple?	~ >
	Find the solution of the linear homogeneous recurrence relation	,
	$a_n = 7a_{n-1} - 6a_{n-2}$ with $a_0 = -1$ and $a_1 = 4$.	
-	Long Questions	
Q:	Use mathematical induction to prove that $n^3 - n$ is divisible by 3 whenever n is a positive integer. Define a graph and a tree. Also draw the graphs of $K_{5,5}$ and W_6 .	10
1	Show that the implication $[(p \lor q) \land (p \to r) \land (q \to r)] \to r$ is a tautology by using truth table. Show that $\neg (p \lor (\neg p \land q))$ and $\neg p \land \neg p$ are logically equivalent.	10
*	Let $R_1 = \{(1,1), (1,3), (2,2), (3,1)\}$, $R_2 = \{(1,1), (3,3), (2,2), (3,1)\}$,	10
· A	$R_3 = \{(1,2), (3,3), (2,1)\}, R_4 = \{(1,3), (2,3)\}$ be the relations on $\{1, 2, 3\}$. Then,	
	a) Which of these relations are reflexive? Justify your answer.	12
	b) Which of these relations are symmetric? Justify your answer.	
	Which of these relations are antisymmetric? Justify your answer. d) Which of these relations are transitive? Justify your answer.	
	d) Which of these relations are transitive? Justify your answer.	

Third Semester 2014
Examination: B.S. 4 Years Programme

Roll No. .7.3.7.2.....

PAPER: Discrete Mathematics (IT)

Course Code: MATH-231

TIME ALLOWED: 2 hrs. & 30 mins.

MAX. MARKS: 50

Attempt this Paper on Separate Answer Sheet provided.

Attempt this Paper on Separate Answer Sheet provided.				
1	Short Questions			
Q2	Let $f: R \to R$ be defined by $f(x) = \frac{5x-7}{3}$. Find a formula for f^{-1} .	10×2		
	Show that among any group of five (not necessarily consecutive) integers, there are two			
	with the same remainder when divided by 4.			
	Show that $\neg (p \lor (\neg p \land q))$ and $\neg p \land \neg q$ are logically equivalent.	3		
	jet) Find all partitions of the set $S = \{1, 2, 3\}$ and show by Venn diagram.			
	Define one-to-one and onto functions.			
	Determine whether the function $f(x) = x^2$ form the set of integers to the set of integers is			
11	one-to-one? Is this function onto?			
	With Find the sets A and B if $A - B = \{1, 5, 7, 8\}$, $B - A = \{2, 10\}$, and $A \cap B = \{3, 6, 9\}$.			
	List five integers that are congruent to 4 modulo 12.			
	ix Draw the graph of $K_{1,4}$ and $W_{7,4}$. Let $A = \{0,1,2,3\}$ and $R = \{(0,0),(1,1),(1,3),(2,2),(2,3),(3,1),(3,2),(3,3)\}$. Show that	sym . Trangitive		
	$A = \{(0,0),(1,1),(1,3),(2,2),(2,3),(3,1),(3,2),(3,3)\}.$ Show that			
	R is an equivalence relation.	b=1 1- n		
	Long Questions	10		
3	Use mathematical induction to show $1+2+2^2+\cdots+2^n=2^{n+1}-1$ for all nonnegative integers n . b) Define a graph and a tree. Also write vertices and edges of the graph K_n .	doce -h-1		
N. C.	Show that the implication $[(p \to q) \land (q \to r)] \to (p \to r)$ is a tautology by using truth table.	10		
	Show that the propositions $p \vee (q \wedge r)$ and $(p \vee q) \wedge (p \vee r)$ are logically equivalent	10		
Q5	Give a formula for the coefficients of r^k , k is an integer, in the expansion of			
	$(x^2 - \frac{1}{x})^{100}$.			
	Draw the graph whose adjacency matrix is given by			
	$\begin{pmatrix} 2 & 2 & 3 & 1 \\ 2 & 0 & 0 & 4 \end{pmatrix}$			
	2 0 0 4 3 0 2 2			
	(1 4 2 0)			

Roll No.

Third Semester 2015 Examination: B.S. 4 Years Programme

PAPER: Discrete Mathematics (IT) Course Code: MATH-231 TIME ALLOWED: 30 mins. MAX. MARKS: 10

Attempt this Paper on this Question Sheet only.

OBJECTIVE

Tick on the correct opt	ion			10
$\neg p \lor \neg q$ is logic	ally equivalent to			
a) ¬p∧¬q	b) $\neg (p \land q)$	c) $\neg p \land q$	d) $p \land \neg q$	
i) Number of edges	in K_4 are			
a) 4	b) 5	c) 6	d) 8	
ii) Number of string	s can be made by reorde	ring the letters of SU	CCESS.	
a) 340	b) 420	c) 512	d) 625	
v) How many permutati	ons of letters ABCDE co	ontain the string ABO	D.	
a) 3!	b) 4!	c) 5!	d) 6!	
() Graphs that a num	nber assigned to each ed	ge are called	graphs	
a) complete	b) weighted	c) simple	d) bipartite	
vi) The cardinality of	f the set $A = \{a, \{a\}, \{a, \{a\}\}\}$	a}}}is		
a) 3	b) 4	c) 2	d) 1	
vii) The set $P(\{a,b,$	(a, b)) has elements			
a)4	b) 8	c) 12	d) 16	
viii) $A \cup (B \cap C)$	_			
	b) $(\overline{A} \cup \overline{B}) \cap \overline{C}$	c) $(\overline{C} \cup \overline{A}) \cap \overline{B}$	d) $(\overline{C} \cap \overline{B}) \cup \overline{A}$	
a) (c o o). 111	0) (1.02). 10	5) (5 = 1.)		
ix) The domain of the	function $f(x) = \sqrt{ x }$ is			
A)(-∞,0]	b) [0,∞)	c) (-∞.∞) d) all of these	
,(,0]	2) [0,)	-/ (-/ -/ -/ -/		
x) If both f and g are	one-to-one functions, the	en $f \circ g$ is		
a) one-to-one	b) onto	a & b	d) none of these	

Third Semester 2015 Examination: B.S. 4 Years Programme Roll No.

PAPER: Discrete Mathematics (IT) Course Code: MATH-231 TIME ALLOWED: 2 hrs. & 30 mins. MAX. MARKS: 50

Attempt this Paper on Separate Answer Sheet provided.

SUBJECTIVE

Q2	i) Let $f: \mathbb{R}^+ \to \mathbb{R}$ be defined by $f(x) = \frac{3\sqrt{x-1}}{2}$. Find a formula for f^{-1} .	10×2
	ii) Prove that an undirected graph has an even number of vertices of odd degree.	
	iii) Show that $\neg (p \lor (\neg p \land q))$ and $\neg p \land \neg q$ are logically equivalent.	
	iv) Let a , b and c be positive integers. Prove that if $a b$ and $b c$ then $a c$.	
	v) Define one-to-one and onto functions.	
	vi) Let $f: R \to R$ be defined by $f(x) = x^2$. Determine whether $f(x)$ is one-to-one? Is this function onto?	
	vii) Find the prime factorization of 45617.	
	viii) List five integers that are congruent to 3 modulo 11.	
	ix) Draw the graph of $K_{5,4}$ and W_{7} .	
	x) Let $A = \{0,1,2,3\}$ and $R = \{(0,0),(1,1),(1,3),(2,2),(2,3),(3,1),(3,2),(3,3)\}$. Show that R is an equivalence relation.	
+	Long Questions	
Q3	a) Use mathematical induction to show that $1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$ for all	10
	 positive integers n. b) If T is a tree with n vertices then prove that T contains no cycles, and has n-1 edges. 	
24	 a) Show that the implication [(p→q)∧(q→r)]→(p→r) is a tautology by using truth table. 	10
	b) Show that the propositions $\sim \forall x (p(x) \rightarrow q(x))$ and $\exists x (p(x) \land \sim q(x))$ are logically equivalent.	
25	a) Give a formula for the coefficients of x^k , k is an integer, in the expansion of $(x^2 - \frac{1}{x})^{100}$.	10
	b) Draw the graph whose adjacency matrix is given by	
	$\begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$	
	0 0 1 0 1 1 0 1	
	1 1 1 0	

	夏 5克	8
UNIVERSITY OF THE PUNJ	AB 3335	4
Examination: B.S. 4 Years Programme	Roll No. 015574	
ER: Discrete Mathematics (IT)	The state of the s	ı
MAX. MA	LOWED: 2 hrs. & 30 nms. 2	ı
Attempt this Paper on Separate Answer Sheet pro	ovided. 5-2 3	
SUBJECTIVE TYPE	353	0
Q2. Short Questions (2x10=20)	至了	8
Prove that an undirected graph has even number of Show that $p \rightarrow q = \neg p \vee q$.	vertices of odd degree	MIN
Determine whether $(\neg p \land (p \rightarrow q)) \rightarrow \neg q$ is a taut	53 -	2
Determine whether the function $f(x) = x^2$ from N this function onto?	→ N is one-to-one. Is 2	NU N
Let $f: R \to R$ be defined by $f(x) = \frac{2x-7}{4}$. Find	5-1(x).	man.
wii) Give an example of a relation which is a set there	with three vertices?	DC
Show that $\neg(n \vee n)$ and $\neg n$ is symmetric a	and anti-symmetric.	17.50
Let $P(x)$ denote the statement " $x > 3$ ". What are the	e truth values of P(4)	4
Construct the truth table for $(p \land q) \rightarrow (p \lor q)$ then	oof 4(b) let of be a tree	7
mo cycle =>	let is connected and con-	to tex
CHESTIONS (30) PARTY - VAL	tices of and V. Let Pi	Or .
. State and prove the pigeon hole principal. Case T . 9h	only between u and V.	4
b) Show that $\neg(p \leftrightarrow q)$ and $p \leftrightarrow \neg q$ are logically equivalent.	yele in G (86) - 1/2	
24. a) If T is a tree with n vertices then prove that Tool is	PNP2 # & Some edges a	he line
b) An undirected graph is a tree if and only if there is a unique	and has not eages. P, and	10
b) An undirected graph is a tree if and only if there is a unique sir two of its vertices.	inple path between any must de	ive
11.	at some vertex (b) at some vertex (b) and again meet at some (bay x) making cycle to u w was x	a
(25. a) Draw a graph whose adjacency matrix given by	meet at some	mi ves
given by	(bay x) making	4
	1 gree do	-
when divided by 4.	the same remainder	-
T's tree if us T is connected and (ii) it	contains no cula	
when divided by 4. 199: The tree if is The connected and (ii) it of the graph is connected if I at least one of the least one where Contrider The and remove one edge from it where Kith = K. 1E(Th.) 1= K-1 = 15/Th.	path between	
goof (4(a) Result is tone for Total let	tues to	שמ
where $K_1+K_2=K$. $E(T_{K_1})=K_1-1$, $E(T_{K_2})=K_2-1+Non-12$	wet is tour To The	1
KI+K1=K + E(TK,) = K,-1, F(T) = +00m it	then TK=TVHT	44.
12 12 10	(TE) = 1E(TE) 1+1ET	11
		21

Third Semester Examination; B.S. 4 Years Programme

PAPER: Discrete Mathematics (IT) Course Code: MATH-231/IT-21404

TIME ALLOWED: 30 mins. MAX. MARKS: 10

Roll No.

Attempt this Paper on this Question Sheet only.

OBJECTIVE TYPE				
Q1. Encircle the correct answer	(1x10=10)			
1. The inverse of the conditional statement p	$\rightarrow a$ is			
a. $\neg p \rightarrow q$ b. $\neg p \rightarrow \neg q$ c. $q \rightarrow p$ c. 1f A= {1,2,3,4}, then the number of element a. 2^4 b. 2^5 c. 2^6	1. $\neg q \rightarrow \neg p$ tts in P (A) =			
3. Consider the relation R={(1,1),(1,2),(1,4),(1	2,1),(2,2),(3,3)} on set A={1,2,3,4} is c. Transitive d. None of these			
A graph of a function f is one-to-one if and or in point. a. at most one b. exactly one	nly if every horizontal line intersects the graph			
	d. Holle of these			
5. 5, 9, 13, 17,is a. Arithmetic series b. Geometric d. Geometric sequence	series c. Arithmetic sequence			
The total number of one-to-one functions, f four elements is	rom a set with three elements to a set with			
a. 24 b. 16 c. 12 7. If $f(x) = 2x + 1$ then its inverse =	d. 9			
a. $x-1$ b. $\frac{x-1}{2}$ c. $1+x$	d. None of these			
 The inverse of given relation R = {(1,1),(1,2) {(1,1),(2,1),(4,1),(2,3)} 	2),(1,4),(3,4),(4,1)} is			
b. {(1,1),(1,2),(4,1),(2,3)}				
c. $\{(1,1),(2,1),(4,1),(4,3),(1,4)\}$				
d. None of these	d C Warrant and a state of the contract of the			
9. If a graph has vertices of degrees 1, 1, 4, 4 and	d 6. How many edges does the graph have?			
a. 8 b. 10	c. 12 d. 14			
10. Which term of the sequence 4,1,-2, is -77				
a. 26 b. 27 c. 28	d. None of these			

Third Semester 2018 Examination: B.S. 4 Years Programme Roll No.

PAPER: Discrete Mathematics (IT) Course Code: MATH-231/IT-21404

TIME ALLOWED: 2 hrs. & 30 mins. MAX. MARKS: 50

Attempt this Paper on Separate Answer Sheet provided.

SUBJECTIVE TYPE

Q2. Solve the following short questions

(2x10=20)

- 1. Draw two 3-regular graphs with six vertices.
- 2. Construct a truth table for the statement form $(p \land q) \lor (\sim p \lor (p \land \sim q)).$
- 3. What is a compound statement?
- 4. Let X is a non-empty set. Prove that the identity function on X is bijective.
- 5. How many integers from 1 through 1000 are multiples of 3 or multiples of 5?
- Find the sum of all two digit positive integers which are neither divisible by 5 nor by 2.
- 7. Define a binary relation P from R to R as follows: for all real numbers x and $y(x, y) \in P \Leftrightarrow x = y^2$. Is P a function? Explain.
- 8. Find x and y given (2x, x + y) = (6, 2).
- Suppose that f is defined recursively by f(0) = 3, f(n+1) ≈ 2f(n) + 3. Find f(2).
- 10. Find the number m of ways that nine toys can be divided among four children if the youngest child is to receive three toys and each of the others two toys.

Q3. Solve the following Long Questions

(5x6=30)

- Define a relation R on the set of all integers Z as follows: for all integers m and n, $m R n \Leftrightarrow m \equiv n \pmod{3}$. Prove that R is an equivalence relation.
- Given any two distinct rational numbers r and s with r < s. Prove that there is a rational number x such that r < x < s.
- 3. Prove that if n is an odd integer, then $n^3 + n$ is even.
- 4. Let S be the function such that S (n) is the sum of the first n positive integers. Give a recursive definition of S (n).
- 5. There are 15 girls and 25 boys in a class. How many students are there in total?
- 6. For the complete graph K_a , find
 - (i) the degree of each vertex
 - (ii)the total degrees
 - (iii)the number of edges.